154 research outputs found

    The derivation of continuum limits of neuronal networks with gap-junction couplings

    Full text link
    We consider an idealized network, formed by N neurons individually described by the FitzHugh-Nagumo equations and connected by electrical synapses. The limit for N to infinity of the resulting discrete model is thoroughly investigated, with the aim of identifying a model for a continuum of neurons having an equivalent behaviour. Two strategies for passing to the limit are analysed: i) a more conventional approach, based on a fixed nearest-neighbour connection topology accompanied by a suitable scaling of the diffusion coefficients; ii) a new approach, in which the number of connections to any given neuron varies with N according to a precise law, which simultaneously guarantees the non-triviality of the limit and the locality of neuronal interactions. Both approaches yield in the limit a pde-based model, in which the distribution of action potential obeys a nonlinear reaction-convection-diffusion equation; convection accounts for the possible lack of symmetry in the connection topology. Several convergence issues are discussed, both theoretically and numerically

    On the decay of the inverse of matrices that are sum of Kronecker products

    Full text link
    Decay patterns of matrix inverses have recently attracted considerable interest, due to their relevance in numerical analysis, and in applications requiring matrix function approximations. In this paper we analyze the decay pattern of the inverse of banded matrices in the form S=M⊗In+In⊗MS=M \otimes I_n + I_n \otimes M where MM is tridiagonal, symmetric and positive definite, InI_n is the identity matrix, and ⊗\otimes stands for the Kronecker product. It is well known that the inverses of banded matrices exhibit an exponential decay pattern away from the main diagonal. However, the entries in S−1S^{-1} show a non-monotonic decay, which is not caught by classical bounds. By using an alternative expression for S−1S^{-1}, we derive computable upper bounds that closely capture the actual behavior of its entries. We also show that similar estimates can be obtained when MM has a larger bandwidth, or when the sum of Kronecker products involves two different matrices. Numerical experiments illustrating the new bounds are also reported

    Legendre-Gauss-Lobatto grids and associated nested dyadic grids

    Get PDF
    Legendre-Gauss-Lobatto (LGL) grids play a pivotal role in nodal spectral methods for the numerical solution of partial differential equations. They not only provide efficient high-order quadrature rules, but give also rise to norm equivalences that could eventually lead to efficient preconditioning techniques in high-order methods. Unfortunately, a serious obstruction to fully exploiting the potential of such concepts is the fact that LGL grids of different degree are not nested. This affects, on the one hand, the choice and analysis of suitable auxiliary spaces, when applying the auxiliary space method as a principal preconditioning paradigm, and, on the other hand, the efficient solution of the auxiliary problems. As a central remedy, we consider certain nested hierarchies of dyadic grids of locally comparable mesh size, that are in a certain sense properly associated with the LGL grids. Their actual suitability requires a subtle analysis of such grids which, in turn, relies on a number of refined properties of LGL grids. The central objective of this paper is to derive just these properties. This requires first revisiting properties of close relatives to LGL grids which are subsequently used to develop a refined analysis of LGL grids. These results allow us then to derive the relevant properties of the associated dyadic grids.Comment: 35 pages, 7 figures, 2 tables, 2 algorithms; Keywords: Legendre-Gauss-Lobatto grid, dyadic grid, graded grid, nested grid

    Contraction and optimality properties of an adaptive Legendre-Galerkin method: the multi-dimensional case

    Full text link
    We analyze the theoretical properties of an adaptive Legendre-Galerkin method in the multidimensional case. After the recent investigations for Fourier-Galerkin methods in a periodic box and for Legendre-Galerkin methods in the one dimensional setting, the present study represents a further step towards a mathematically rigorous understanding of adaptive spectral/hphp discretizations of elliptic boundary-value problems. The main contribution of the paper is a careful construction of a multidimensional Riesz basis in H1H^1, based on a quasi-orthonormalization procedure. This allows us to design an adaptive algorithm, to prove its convergence by a contraction argument, and to discuss its optimality properties (in the sense of non-linear approximation theory) in certain sparsity classes of Gevrey type

    Adaptive Fourier-Galerkin Methods

    Full text link
    We study the performance of adaptive Fourier-Galerkin methods in a periodic box in Rd\mathbb{R}^d with dimension d≥1d\ge 1. These methods offer unlimited approximation power only restricted by solution and data regularity. They are of intrinsic interest but are also a first step towards understanding adaptivity for the hphp-FEM. We examine two nonlinear approximation classes, one classical corresponding to algebraic decay of Fourier coefficients and another associated with exponential decay. We study the sparsity classes of the residual and show that they are the same as the solution for the algebraic class but not for the exponential one. This possible sparsity degradation for the exponential class can be compensated with coarsening, which we discuss in detail. We present several adaptive Fourier algorithms, and prove their contraction and optimal cardinality properties.Comment: 48 page

    Adaptive Spectral Galerkin Methods with Dynamic Marking

    Get PDF
    The convergence and optimality theory of adaptive Galerkin methods is almost exclusively based on the D\"orfler marking. This entails a fixed parameter and leads to a contraction constant bounded below away from zero. For spectral Galerkin methods this is a severe limitation which affects performance. We present a dynamic marking strategy that allows for a super-linear relation between consecutive discretization errors, and show exponential convergence with linear computational complexity whenever the solution belongs to a Gevrey approximation class.Comment: 20 page

    On p-Robust Saturation for hp-AFEM

    Full text link
    We consider the standard adaptive finite element loop SOLVE, ESTIMATE, MARK, REFINE, with ESTIMATE being implemented using the pp-robust equilibrated flux estimator, and MARK being D\"orfler marking. As a refinement strategy we employ pp-refinement. We investigate the question by which amount the local polynomial degree on any marked patch has to be increase in order to achieve a pp-independent error reduction. The resulting adaptive method can be turned into an instance optimal hphp-adaptive method by the addition of a coarsening routine

    A saturation property for the spectral-Galerkin approximation of a Dirichlet problem in a square

    Get PDF
    Both practice and analysis of adaptive pp-FEMs and hphp-FEMs raise the question what increment in the current polynomial degree pp guarantees a pp-independent reduction of the Galerkin error. We answer this question for the pp-FEM in the simplified context of homogeneous Dirichlet problems for the Poisson equation in the two dimensional unit square with polynomial data of degree pp. We show that an increment proportional to pp yields a pp-robust error reduction and provide computational evidence that a constant increment does not
    • …
    corecore